An Empirical Comparison of Neural Architectures for Reinforcement Learning in Partially Observable Environments

نویسندگان

  • Denis Steckelmacher
  • Peter Vrancx
چکیده

This paper explores the performance of fitted neural Q iteration for reinforcement learning in several partially observable environments, using three recurrent neural network architectures: Long ShortTerm Memory [7], Gated Recurrent Unit [3] and MUT1, a recurrent neural architecture evolved from a pool of several thousands candidate architectures [8]. A variant of fitted Q iteration, based on Advantage values [6, 1] instead of Q values, is also explored. The results show that GRU performs significantly better than LSTM and MUT1 for most of the problems considered, requiring less training episodes and less CPU time before learning a very good policy. Advantage learning also tends to produce better results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Map: Structured Memory for Deep Reinforcement Learning

A critical component to enabling intelligent reasoning in partially observable environments is memory. Despite this importance, Deep Reinforcement Learning (DRL) agents have so far used relatively simple memory architectures, with the main methods to overcome partial observability being either a temporal convolution over the past k frames or an LSTM layer. More recent work (Oh et al., 2016) has...

متن کامل

Toward Nonlinear Local Reinforcement Learning Rules Through Neuroevolution

We consider the problem of designing local reinforcement learning rules for artificial neural network (ANN) controllers. Motivated by the universal approximation properties of ANNs, we adopt an ANN representation for the learning rules, which are optimized using evolutionary algorithms. We evaluate the ANN rules in partially observable versions of four tasks: the mountain car, the acrobot, the ...

متن کامل

Solving Partially Observable Reinforcement Learning Problems with Recurrent Neural Networks

In partially observable environments effective reinforcement learning (RL) is still a fairly open question. Most common algorithms fail to produce good results for those problems. However, many real-world applications are characterized by those difficult environments. In this paper we propose the application of recurrent neural networks (RNN) to identify in a first step the complete state space...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1512.05509  شماره 

صفحات  -

تاریخ انتشار 2015